¶q¤l¨t²Îªº¼ÒÀÀ
¶q¤lª«²z½Æ²ß
«D®ÉÅÜ©ÊÁ§¤B®æ¤èµ{¡G¤@ºû¨t²Îªº¥»¼xÈ»P¥»¼xºA¡]§ô¿£ºA¡^
¹ï©ó¦ì¶Õ¤£ÀH®É¶¡¦Ó§ïÅܪºÁ§¤B®æ¤èµ{¦¡¡A §Ṳ́w¸gª¾¹D¥¦¬O¥i¥H³Q§ï¼g²¤Æ¦¨¡]®É¶¡ÅܼƤÀÂ÷¥X¨Ó¡^¬°¤@Ó¥»¼xÈ«¬ªº¤G¶¥·L¤À¤èµ{¦¡
- h2/2m ¡¾2 £r(x) + V(x)£r(x) = E£r(x)
ª`·N¨ä¤¤ E »P £r(x) ¬Ò¬°¥¼ª¾¡C ·í§ÚÌn¥Î¹q¸£pºâªº¤èªk¨Ó¨D¤@Ó·L¤À¤èµ{ªº¼ÆȸѡA´N¬Oµ¥©ón¿n¤À¤W¦¡¤¤±a¦³·L¤À²Å¸¹ªº³¡¤À¡A¨Ï¥¼ª¾¨ç¼ÆÅܬ°¤wª¾¡C
³o¼Ëªº¤@Ó°ÝÃDùØ¡A·|¥X²{¨âºØ¤j¤£¬Û¦Pªº¸Ñªº«¬¦¡¡A¤@¬O´²®gºA¡B¤G¬O§ô¿£ºA¡A¦b§ô¿£ºA®É³Ì«n·|¥X²{ªº²{¶H´N¬O¯à¶qªº¶q¤l¤Æ¡A¤]´N¬O¥u¦³¬Y¨Ç¯S©wªº¯à¶qȤ~¬O¤¹³\ªº¡C±qpºâªº¨¤«×¦Ó¨¥¡A¤¹³\»P¦³¬O«ç¼Ëªí²{¥X¨Ó©O¡H¬Oªi¨ç¼Æ¯à§_³QÂk¤@¤Æªº°ò¥»n¨D¡C¦pªG¦b¬Y¤@Ó E Ȫº¸Õ§@¤Uªi¨ç¼Æµo´²¤F¡A¥¦´N¨S¦³¿ìªk³Q¨D¥X¹ï¾ãӪŶ¡ªº¿n¤À¡]µL¤j¡^¡A¦]¦Ó¤]´N¨S¦³¿ìªkÂk¤@¤Æ¥¦ªºªi¨ç¼Æ¤F¡C§ÚÌ´N»{©w³o¼Ëªº E ȬO¤£¤¹³\ªº¯à¶qÈ¡A¨Ã¥B§@¨ä¥Lªº²q´ú¡A¾¨¥i¯à§ä¥X©Ò¦³¤¹³\ªº E È»P¨ä¹ïÀ³ªºªi¨ç¼Æ¸Ñ¡C
¦b¥»¸`¬°¤F§Q©ó¼ÒÀÀ¥Ü½d¥H¤W»¡©úªº¯S©Ê¡A§Ú̱ĥΤF¤@Ó¸û¬°Â²¤Æ¤Fªº±¡ªp¡A´N¬O¥u³B²z V(-x) = V(x) ³oºØ¥H y=0 ¬°Ãè±¹ïºÙ³oºØ«¬¦¡ªº¤@ºû¦ì¶Õ¡C³o¼Ëªº¹ïºÙ©Ê±N«OÃÒ¨ä¸Ñ¥²¦³©ú½Tªº¦tºÙ©Ê¡]parity¡^¡A·N«ä´N¬O»¡¨ä¸Ñ¥²©w¬O©_¨ç¼Æ f(-x) = -f(x) ©Î¬O°¸¨ç¼Æ f(-x) = f(x) ¡A¤£·|¦³¨ä¥Lªºª¬ªp¡C
³o¼Ëªº¯S¨Ò±aµ¹§ÚÌ¥H¤Upºâ¤WªºÂ²¤Æ¡G¤@¡B¸Ñ¦Û°Ê¤À¬°©_¨ç¼Æ»P°¸¨ç¼Æ¨â²Õ¡A³£¥un³B²z«á±q¹s¨ì¥¿µL¤j¤§¶¡ªº½d³ò¨D¸Ñ§Y¥i¡]¦]©_°¸¨ç¼Æªº¥t¤@¥b¬O½T©wªº¡^¡A¥t¥~¡A¤Z©_¨ç¼ÆªÌ¬Ò¥i¥Ñªì©lìÂI¥H f(x=0) = 0¡Bf'(x=0) = 1 §@ªì©l±ø¥ó¥Xµo¶}©l¦V¥k¿n¤À¡A¦Ó°¸¨ç¼ÆªÌ¬Ò¥i¥Ñªì©lìÂI¥H f(x=0) = 1¡Bf'(x=0) = 0 §@ªì©l±ø¥ó¥Xµo¶}©l¦V¥k¿n¤À¡C
n¿n¤Àªº¤èµ{¦¡¡A¸g¾ã²z«á¦³¥H¤U«¬¦¡
d2/dx2 £r(x) = 2m/
h2 [V(x) -E]£r(x)¥i¤Æ¤Æ¬°¨âÓÁp¥ßªº¤@¶¥±`·L¤è¦¡¡G
d/dx£r(x) = £r' (x)
d/dx £r' (x) = 2m/h2 [V(x) -E]£r(x)ª`·N°Ñ¦Ò®Ñ¤W«Øij¥Î¤U±³oºØ Euler-Cromer ºtºâªk¨Ó³B²z³oºØ·|®¶Àúªº¸Ñ´N°÷¦n¤F¡]¸Ô¨£°Ñ¦Ò®Ñ½Ò¤å¡^¡A¤]´N¬O
f's+1 = f's + f''s+1 Dx
fs+1 = fs + f's+1 Dx§Ṳ́]¦]¦¹¤£¥²°Ê¥Î¹³ Runge-Kutta ¨ººØ¸û°ª¶¥¥B¸ûºë±Kªººtºâªk¡]¸Ô¨£¼ÆȤèªk½u¤W±Ð§÷¡^¡C¥t¥~¡AY§Ú̱Ħæ©Ò¿×ªºì¤l³æ¦ì¡]atomic unit¡^¡A«h¤W¦¡¤¤ªº¹q¤l½è¶q»P¤R®Ô§J±`¼Æ³£¥i¥H³]¦¨ 1¡C
§Y«K¬O V(-x) = V(x) ³o¼Ëªº¦ì¶Õ¤]¬O¥i¥H¦³¦UºØ¤£¦Pªº§Îª¬¡A¦b¦¹¶i¤@¨B²¤Æ¥u°µ¦ì¤«ªº°ÝÃD¡A¤]´N¬O·í x< |a|¡AV(x) = -V0¡B·í x> |a|¡AV(x) = 0
¥H¤U¬°µ{¦¡¬yµ{·§n¡G
(1) ¨Ï¥ÎªÌ¿é¤J¦ì¤«²`«× V0 »P¼e«× 2a¡Aµe¥X¦ì¤«ªº¹Ï§Î
(2) ¿é¤J²q´úªº E È¡A¥H¤Î©_°¸©Ê
(3) ¥Îºtºâªk¤@¨B¨B¿n¤Àªi¨ç¼Æ¡A¨Ãø¹Ï¨ÑÆ[¹î
(4) ²M°£µe±¡B«µe¦ì¤«¡B«ÂШBÆJ (2)
³oÓµ{¦¡¬O¨Ñ¨Ï¥ÎªÌ¤£Â_¤â¤u¹Á¸Õ E È¡A§ä¥X¶q¤l¤O¾Ç¤¹³\ªº¨º¨Ç¡C
¼¶¼gµ{¦¡¡G
¡]½Ð¦Û¦æ½m²ß¡^
¯uªº¼g¤£¥X¨Ó¡A°½¬Ý¤@¤U¦Ñ®v¼gªº½d¨Òµ{¦¡
ijÃD±´°Q¡G
¡]½Ð¨£½Ò¤å¡^
®ÉÅÜ©ÊÁ§¤B®æ¤èµ{¡]ªi¥]´²®g¡^
®ÉÅܩʪºÁ§¤B®æ¤èµ{¦¡¤ñ«D®ÉÅܪº§xÃø±o¦h¡A±qªì©l®É¨è t = t0 ¶}©l¡A¨C±À¶i¤@¬q·L¤pªº®É¶¡¡A´Nn¸Ñ¥X¾ã®Mªi¨ç¼Æ¦bªÅ¶¡¤¤ªº¤À§G¡A§ó³Â·Ðªº¬O¡A³o¼Ëªº¦hÅܼƪº¸Ñ·L¤è°ÝÃD®e©ö³y¦¨¤£Ã©w¡A®Ú¥»¤W¯}Ãa¤F¸Ñªº¥¿½T©Ê¡C§Ú̦b³o¤p¸`¦]¦¹n¾Ç²ß«Ü«O¦u«Üéwªº¤èªk¡A¥H«K³B²z«D®ÉÅÜ©ÊÁ§¤B®æ¤èµ{¦¡ªº¿n¤À¨D¸Ñ°ÝÃD¡C ¡]¹³¬O°Ñ¦Ò®Ñ´£¨ì§Ṳ́£À³±Ä¥Î (18.17) ¦¡¨ººØ¤è¦¡ªººtºâªk¡A¦ÓÀ³±Ä¥Î (18.18) ¨º¼Ëªº¡A²Ó¸`½Ð¨£ì¤å¡^
Gould and Tobochnik ®Ñ¤¤±Ä¥Î¤F¥t¤@ºØ¤èªk¡A¥¦¬O§â®ÉÅܩʪi¨ç¼Æ¡]¤@©w¦³¹ê³¡»Pµê³¡¡^ªº¹ê³¡»Pµê³¡¤À¶}³B²z¡A±q쥻ªºÁ§¤B®æ¤èµ{¦¡¡]¥H¤U²¤Æ¬°¤@ºû¡^
i
hd/dt Y(x,t) = -h2/(2m) d2/dx2 Y(x,t) + V(x) Y(x,t)¦b¥O
Y(x,t) = R(x,t) + i I(x,t)
©î¶}¦¨¨â²Õ¤À§O³B²z
d/dt R(x,t) = Hop I(x,t)
d/dt I(x,t) = - Hop R(x,t)
¦pªG¦b³oùبϥΥb¨Bªk¡]¤¤ÂIªk¡^¡A³oºØºtºâªk¥»¨Ó¬On¦A¦hºâ¤¤ÂI±×²v²q´úȪº¡]×¹L¼ÆȤèªkªº¦P¾Ç¥i¦¸¦^·Q¤@¤U¶¥¶©¥¨®w¶ðªkªºµ¦²¤¡^¡A¦ý¦b³oùتºª¬ªp¦¨¤F I(x,t) ¬O R(x,t) ªº±×²v¡B-R(x,t) ¤]¬O I(x,t) ªº±×²v¡A´N¥i¥H¦w±Æ¦¨ R(x,t) ¥Ã»·¦b®æ¤lÂI¨DÈ¡A¦Ó I(x,t) ¥Ã»·¦b¤¤¶¡ÂI¨DÈ¡A¦p¦¹´N³£¤£¥²¦hªáÃB¥~ªº¤@¿ºâ¨D¤¤ÂI±×²v¤F¡A¨ãªºªººtºâªk¦p¤U¡G
R( x, t + Dt ) = R( x, t ) + Hop I( x,t + Dt/2 ) Dt
I( x, t + (3/2)Dt ) = I( x, t + Dt/2 ) - Hop R( x, t + Dt ) Dt
¦b³oºØ¤è¦¡ªºªí¥Ü¤U¡A¾÷²v±K«× P(x,t) = R(x,t)2 +I(x,t)2 ¤´¥i¥H¥Î¥H¤U³oºØ¤è¦¡¨Óªí¹F
P(x,t) = R(x,t)2 + I(x,t-Dt/2) I(x,t+Dt/2)
P(x,t+Dt/2) = R(x,t+Dt) R(x,t) + I(x,t+Dt/2)2
Visscher ÃÒ©ú¤Wzºtºâªk¦bº¡¨¬ -2
h/Dt < V < 2h/Dt - 2h2/(mDx)2 ³o¼Ëªº V »P Dx ȬOéwªº [Ref. Computers in Physics 5(6), 596 (1991)]¡C®Ö¤ßºtºâªk´£n¡G
½Ðª`·N³o»q¦³®É¶¡¡BªÅ¶¡¨âÓÅܼơA³£¦³³QÂ÷´²¤Æ¡A¦ý¦b¦¹¥u¦³®É¶¡¬O»Ýn°µ·L¨B±À¶i Dt ªº¡AHamiltonian ºâ²Å¤¤¥]§t¤F¹ïªÅ¶¡ªº¤G¦¸·L¤À¡A¦b¨ºùج۾FªñªºªÅ¶¡®y¼Ð®æ¤l¶¡ªº¡]ªi¡^¨ç¼ÆȬO¦³¤@°_§@¨Ç¹Bºâ¡A¦ý¤£¦PªÅ¶¡ªºªi¨ç¼Æ¤£¬O±q¡A¦Ó¬O¤@¶}©l´Nµ¹¤F¤À§G¦b¾ãӪŶ¡¡]§YªÅ¶¡¤¤³B³B¦³©w¸q¡^ªºªi¨ç¼Æ§@¬°ªì©l±ø¥ó¡C±qºtºâªk¤W¨Ó¬Ý¡Ax ÂI¤Wªºªi¨ç¼Æȥû·¬O¥Ñ¤W¤@®É¨è
¸Õ°Ý¡A·s®É¨è³B³Bªºªi¨ç¼Æ¤À§G¬O§_¤´º¡¨¬Á§¤B®æ¤èµ{¦¡¡A¤]´N¬O»¡
§Ú̬O¥ý§âªÅ¶¡
¼¶¼gµ{¦¡