·LÂZ²z½×

 

¶q¤l¤O¾Ç­pºâ»P¡]½u©Ê¡^¥ú¾Ç©Ê½è¹w´ú

±q¶q¤l¤O¾Çªº­pºâ§Ú­Ì¥i¥HÀò±o¨t²ÎªºÁ`¯à¡B³æ²É¤lªi¨ç¼Æ¡B­ì¤l¨ü¤Oµ¥ª«²z¶q¡C¦ý¬O¡A¶q¤l¤O¾Ç­pºâ­n¦p¦ó¹w´ú¥ú¾Ç©Ê½è©O¡H­º¥ý§Ú­Ì¥²¶·¤F¸Ñ¨ì¡A¦UºØ§÷®Æ¦³¨ä¯S©w¥ú¾Ç©Ê½è¡A¬O¦]¬°§÷®Æ¬Ò¬O¥Ñ¹q¤l»P­ì¤l®Ö³o¨Ç±a¹q²É¤l©Ò²Õ¦¨¡A¦]¦Ó·|¨ü¹qºÏªiªº¼vÅT¡A·|»P¹qºÏªi¥æ¤¬§@¥Î¡A¡C±q¶q¤l¤O¾Çªº¤½¦¡¨Ó¬Ý¡A¤Þ¤J¹qºÏ³õ¨âºØ¤è¦¡¡Aªº¨ä¤¤¤@ºØ¬O¹qºÏªi¬Ý§@¬O¥ú¤l¡A¦Û¤v¤]¬O¹q¤l¤§¥~ªº¥t¤@ºØ²É¤l¡A¦Ó²É¤l¤§¶¡¤S¦³¤£¦Pªº¥æ¤¬§@¥Î¡]³z¹L hamiltonian¡^¡F¥t¤@ºØ¤èªk¡A¬O§â¹qºÏªiªº®ÄÀ³¬Ý§@¬O¤@ºØ¥j¨åªº¥~¥[³õ¼vÅT¡C¦b CASTEP ¤¤¨Ï¥Îªº¬O«áªÌ¡A¬G¬Ý¤£¨ì¥ú¤lªºªi¨ç¼Æ¡A¦Ó¬O·|¬Ý¨ì Hamiltonian ¤¤ªº°Ê¶qºâ²Å³Q¦h¥[¤F¤@­Ó¦V¶q¦ì¡]vector potential, A ¡^¡C ·|¨ã¦³¨º¼Ëªº§Î¦¡¡A¬O¦]¬°¦p¦¹¤@¨Ó¥¦´N·|º¡¨¬²É¤l¦b¹qºÏ³õ¤Uªº¹B°Ê¤èµ{¦¡¡]³Ò­Û´µ¤O¡^¡C

 

·LÂZ²z½×²¤¶»P«D®ÉÅܤ@¶¥·LÂZªºµ²ªG

­n¨D¸Ñ¤W­z¨º¼Ë¦³·s¼W¶µ Hamiltonian ªº¡]¶q¤l¡^¤O¾Ç°ÝÃD¡A±`¨£ªº§@ªk¬O§â³o­Ó¡]¹qºÏÔ·©Ò±a¶i¨Óªº¡^ÃB¥~ºâ²Å¶µ·í§@¬O·L¤pªºÂZ°Ê¡A¦Ó¥Î·LÂZ²z½×ªº¤èªk¨Ó³B²z¡C

·LÂZ²z½×ªº°ò¥»ºë¯«¡A¬O°²³]·sªºª«²z¶q»P­ì¥»³Q¥¼·LÂZ¨t²Îªº¦P¤@ª«²z¶q¤@©w¦³¯Å¼Æ®i¶}ªºÃö«Y¡A¥Hªi¨ç¼Æ¡B¥»¼x¯à¶q¡Bºâ²Å´Á±æ­È¬°¨Ò¡G

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + ...

E = E(0) + λE(1) + λ2E(2) + ...

O = O(0) + λO(1) + λ2O(2) + ...

¦Ó λ «h¬O¨Ó¦Û·sÂÂ Hamiltonian

H = H(0) + λΔH

ªºÃö«Y¡A¨ä¤¤ ΔH ´N¬O·LÂZ¡A¨ä¤j¤p¥Ñ λ ±±¨î¡C

½Ðª`·N¦b³oùØ Ψ(0)¡BE(0)¡BO(0)¡BH(0) ¥H¤Î ΔH §Ú­Ì¬Oª¾¹Dªº¡A¨ä¥L¤W¼Ð¬O (1)¡B(2) µ¥©Î§ó°ª¶¥¤§¦Uª«²z¶qªº®i¶}¶µ¡A§Ú­Ì¤@¶}©l¨Ã¤£ª¾¹D¡A»Ý­n±q¥Ñ·LÂZ²z½×±À¾É¾ã²z¥X¨Óªº¤½¦¡¥h¨D¸Ñ¡A¤~¯à¾å±o¡C

¦Ü©ó¯àÅý§Ú­Ì¨D¥X¸Ñªº¤½¦¡«ç»ò¨Óªº©O¡H§Ú­Ì¦³¿³½ì·Qª¾¹D¤§³Q·LÂZ¨t²Îªº¸Ñ¡]¥»¼x¯à¶q E ¤Î¥»¼x¨ç¼Æ Ψ¡^¡Aº¡¨¬Á§¤B®æ¤èµ{¦¡

HΨ = EΨ

·LÂZ²z½×»{¬°«e­± λ ®i¶}¯Å¼Æªº§Î¦¡¬O¤@©w¦¨¥ßªº¡A§â Ψ ¤Î E ªº·LÂZ®i¶}¦¡¥N¤J¤W­±ªºÁ§¤B®æ¤èµ{¦¡¡C«h¸Ó¦¡µ¥¸¹ªº¨âÃä³£·|¥X²{¤@¤j°ï¦UºØ¦¸¤èªº λn ¶µ¡G

( H(0) + λΔH ) ( Ψ(0) + λΨ(1) + λ2Ψ(2) + ... )
= ( E(0) + λE(1) + λ2E(2) + ... ) ( Ψ(0) + λΨ(1) + λ2Ψ(2) + ... )

¦Ó³o­Óµ¥¸¹Ãö«Y«o¬O¤£ºÞ λ ­È¬O¦h¤Ö¡A³£¤@©w­n¦¨¥ß¡C¤]´N¬O»¡¡A­Y§Ú­Ì°Ý λ ªº­È¸Ó¬O¦h¤Ö¡A«h§Ú­Ì¥²¶·­n¨D¸Ñ¨Ì¤W¦¡²¾¶µ¾ã²z¦¨¤§ λ ªº¾­¦¸¤è¦¡¶µ

0 + Bλ1 + Cλ2 + ... = 0

¨ä¤¤

A = ( H(0)Ψ(0) - E(0)Ψ(0) )

B = ( H(0)Ψ(1) + ΔHΨ(0) -E(0)Ψ(1) - E(1)Ψ(0) )

C = ( H(0)Ψ(2) +ΔHΨ(1) - E(0)Ψ(2) - E(1)Ψ(1) - E(2)Ψ(0) )

¦ý¬O¡A«ç»ò¥i¯à λ µL½×¤°»ò­È³£·|º¡¨¬¤W­±ªº¤@¤¸¦h¦¸¤èµ{¦¡©O¡A°ß¤@ªº¥i¯à¡A´N¬O λn ¦U¶µªº«Y¼Æ A¡BB¡BC¡B...¡A³£«íµ¥©ó¹s¡C¤]´N¬O»¡¡G

H(0)Ψ(0) = E(0)Ψ(0)

H(0)Ψ(1) + ΔHΨ(0) = E(0)Ψ(1) + E(1)Ψ(0)

H(0)Ψ(2) +ΔHΨ(1) = E(0)Ψ(2) + E(1)Ψ(1) + E(2)Ψ(0)

¤W¦C¦U¦¡¤¤¤§¥¼ª¾¼Æ¤w¥ÎÃC¦â¼Ð¥X¡C

±`¨£¦³¨âºØ¤èªk(°²³]µL²¨Ö)¡G

¦C¥X lambda ¦¸¤è«Y¼Æ¥t¤@ºØªº¤èªk¡A

H(0)Ψ(0) = E(0)Ψ(0)

( H(0) - E(0) ) Ψ(1) = ( ΔH + E(1) ) Ψ(0)

( H(0) - E(0) ) Ψ(2) = ( E(1) - ΔH ) Ψ(1) + E(2) Ψ(0)

§Q¥Î ∫ Ψ*(0) Ψ(1) dx = 0 ªº¯S©Ê¡]¨£¤Uµù¡^¡A¤@¶¥¦¡¤¤¡A¨â°¼¦P®É¥ª­¼ Ψ*(0) ¨Ã¿n¤À¡Aµ¥¸¹¥ª°¼Åܹs¡A«h E(1) ¥iª½±µ²¾¶µÀò±o¡C

µù¡G­Y A ¬O Hermitian¡A A | u' > = 0¡A¥iÃÒ©ú < u' | A | u > = 0¡CÃÒ©ú¡G < u' | A | u > = < u | A | u' >* = < u | 0 > = 0

¨D¸Ñ Ψ(1) ªº¤èªkªº¡A¬O§Q¥Î²Ä¤@¦¡ªº¥»¼x°ÝÃD¸Ñ

H(0) um = Em um

¨Ó®i¶} Ψ(n) ¤Î E(n)¡A¥H Ψ(1) ¬°¨Ò¡A

Ψ(1) = Σn a(1)n un

¥N¤J«e­± λ1 «Y¼Æªº¦¡¤l¤¤¡A¨Ã¥B°²³]§Ú­Ì¥¿¦b³B²z Ψ(0) = um ªº¨º²Õ Ψ(1)¡]·íµM¡A¨ä¥L©Ò¦³¤£¦P m ­Èªº¸Ñ¤]¬O¬Û¦Pªº³B²z¤è¦¡¡^¡A´N¦³¡]¦b¦¹¥H ΔHkm ¥Nªí <uk | ΔH | um> ¡^

Σn a(1)n En un + ΔHum = Em Σn a(1)n un + E(1)um

¦Û¥ª°¼­¼¤Wn*k ¨Ã¿n¤À¡A§Q¥Î <uk | um> = δkm¡A¥Ñ k ≠ m ªº¦¡¤l¥i±o

a(1)k = ΔHkm/(Em - Ek)

ª`·N¤W¦¡¤¤ k ≠ m ¡]§Ú­Ì¥¿¦b³B²z Ψ(0)m ªº²Ä¤@¶¥·LÂZ Ψ(1)m¡^¡A¥t¥~¥Ñ m = n ªº¦¡¤l¤]¥i¶¶«K±o

E(1) = ΔHmm

²{¦b¥u³Ñ¤U¡]¥¿¦b³B²z¤§ m ªº¡^a(1)m ©|¥¼½T©w¡AÂǥѭn¨D Ψm = Ψ(0)m + λ Ψ(1)m = um + λΨ(1)m ¥²¶·¬OÂk¤@¤Æªº¡]¨ú¨ì λ1 ªººë½T«×¡^¡C«h¦³

1 = < um + λ Σn a(1)n un | um + λ Σn a(1)n un > = 1 + λa(1)m + λa(1)m* + λ2 Σn a(1)n a(1)n*

¦]¬°ºë½T«×¨ú¨ì λ1¡A¦]¦¹§ä¨ì a(1)m = 0 ¥i¥Hº¡¨¬¦¹¤@±¡ªp¡C ¨ì¦¹ªi¨ç¼Æ¤Î¯à¶q¤§¤@¶¥·LÂZ®i¶}ªº©Ò¦³¥¼ª¾«Y¼Æ¬Ò½T¤w©w¡C

¦Ü©ó¤G¶¥·LÂZ¡A±Ä¥Îªº¤]¬O¬Û¦üªºµ¦²¤¡A¥i¨£©ó¶q¤lª«²z©Î¶q¤l¤Æ¾Ç±Ð¬ì®Ñ¡C

 

²¨Ö·LÂZ

¥H Ψn(0) , Ψm(0) ²¨Ö¬°¨Ò¡A

Ψn = CnnΨn(0) + CnmΨm(0) + λΨn(1) + λ2 Ψn(2) + ...

Ψm = CmnΨn(0) + CmmΨm(0) + λΨm(1) + λ2 Ψm(2) + ...

¥ý¹ï¨¤¤Æ H0 + λΔH ¨D·sªº Ψn ¡B Ψm

¨ä¾l¨£½Ò¥» ......

 

»P®É¶¡¦³Ãöªº·LÂZ

¶ÂªO±À¾É¡G ¶O¦Ì¶Àª÷«ß

 

 

±q¤¶¹q¨ç¼Æµê³¡¥Xµo

¤¶¹q¨ç¼Æ ε ªº©w¸q¬O D = ε E¡A¨ä¤¤ D ¬O¹q¦ì²¾¡AE ¬O¹q³õ¡C­Y§â¶g´ÁÅܤƪº¹q³õ¥Î½Æ¼Æ¬Û¶q¨Óªí¥Ü¡A«h¹ê³¡ªº¤¶¹q¨ç¼Æ»P½Æ¼Æ¬Ûªº¹q³õ­¼¦b¤@°_¥NªíªiªºÄ~Äò®¶°Ê¶Ç¼½¡A¦Óµê³¡ªº¤¶¹q¨ç¼Æ»P½Æ¼Æªº¬Û­¼¦b¤@°_«h¥Nªí¦³®¶´Tªº°I´î¡A´N¤]´N·N¨ýµÛ¤¶½è§l¦¬¯à¶q¡C

¹q¤l¦b³æ¦ì®É¶¡¤º¦]§l¦¬¹qºÏªi¦ÓÅD¾Eªº¾÷²v¡A¥i¥H¥Ñ®ÉÅÜ©Ê·LÂZ©Ò±À¾É¥X¨Óªº "¶O¦Ì¶Àª÷«ß" ¤½¦¡¨Ó´y­z¡A³o¥NªíµÛ¤¶½è¨t²Î§l¦¬¹qºÏªiªº±¡§Î¡A¥¦¬O¥Ñ¹q°¸·¥ºâ²Å¡B¦û¾Ú¶q¤lºA¡B¥¼¦û¾Ú¶q¤lºA¡B¥H¤Î³o¨ÇºAªº¥»¼x¯à¶q®t©Òºc¦¨¡C±q¹qºÏªi¦b¤¶½è¤¤¶Ç¼½ªºÆ[ÂI¡A³o¥¿¬O¤¶¹q±`¼Æµê³¡ªº¦æ¬°¡C¦]¦¹¡A¤¶¹q±`¼Æ¡]¨ç¼Æ¡^ªºµê³¡³z¹L¶O¦Ì¶Àª÷«ß¦Ó¯à¥Hªi¨ç¼Æ¡B¥»¼x¯à¶qµ¥¶q¤l¤O¾Çªº¤½¦¡ªí¥Ü¥X¨Ó¡G

epsilon_2_formula

 

Kramers-Kronig Âà´«¨ú±o¹ê³¡

°ò©óª«²z¤¤ªº¦]ªGÃö«Y¡A¤¶¹q¨ç¼Æªº¹ê³¡»Pµê³¡¨âªÌ¤§¶¡¤£¬O¦U¦Û¿W¥ß¦Ó¬O¦³Ãö¡C³z¹L Kramers-Kronig Âà´«¥i±o¨ä¹ê³¡¡C

­n¤p¤ßªº¬O K-K Âà´«²z½×¤W¬O¿n¤À©Ò¦³ÀW²v½d³ò¡A´N¤]´N·N¨ýµÛ¦b­pºâ¤¶¹q¨ç¼Æµê³¡®É¡A¥²¶·¤Þ¤J«D±`¦hªºªÅ­y°ì¤~¥i¯à¹ïÀ³¨ì¤ñ¸û°ªÀW²vªº¥ú¤l§l¦¬¡C¡]¦Ü©ó¨ì©³­n¨ú¦h¤Ö¤~°÷¡A¶·°µ "¦¬ÀÄ©Ê´ú¸Õ¡C¡^

 

¨ä¥L¡]½u©Ê¡^¥ú¾Çª«²z¶q

¦³¤F¹ê³¡»Pµê³¡ªº¤¶¹q¨ç¼Æ¡A´N¯à³z¹L¤@¨Ç²³æªºÃö«Y¨ä¥Lªº½u©Ê¥ú¾Ç¶q¡A¨Ò¦p

§l¦¬«Y¼Æ¡]§l¦¬¥úÃС^

Abs = ε2 ω / (n c) ¡A¨ä¤¤ w ¬O¤J®g¥ú¤lÀW²v¡Bn ¬O§é®g²v¡C

§é®g²v

¹qºÏªi¦b¤¶½è¤¤¶Ç¼½ªº¤è¦¡¥i¸g¥Ñ§é®g²v¨Ó´y­z¡A¥¦°ò¥»¤W¬O´y­z¤¶½è¤¤¥ú½u¶Ç¼½¬Û¸û©ó¯uªÅ¤¤¶Ç¼½¦b³t²v¤Wªº®t²§¡A¦¹¤@®t²§³y¦¨¤F·í¥ú½u¥H«D««ª½¨¤«×³q¹L¤£¦P§é®g²vª«½è©Òºc¦¨ªº¤¶­±®É¡A¥úªº¦æ¶i·|Ås§é¤@­Ó¨¤«×¡A§é®g²vªº¦WºÙ¥Ñ¦¹¦Ó¨Ó¡C³z©úªºª«½è¨ä§é®g²v¬O¯Â¹ê¼Æ¡A·|§l¦¬¥ú½uªºª«½è«h¨ä§é®g²vµê³¡¤£¬°¹s¡C

N = n + ik ¡A¨Ã¥B N »P¤¶¹q¨ç¼ÆªºÃö«Y¬O N2 = ε = ε1 + i ε2