·LÂZ²z½×
¶q¤l¤O¾Çpºâ»P¡]½u©Ê¡^¥ú¾Ç©Ê½è¹w´ú
±q¶q¤l¤O¾Çªºpºâ§ÚÌ¥i¥HÀò±o¨t²ÎªºÁ`¯à¡B³æ²É¤lªi¨ç¼Æ¡Bì¤l¨ü¤Oµ¥ª«²z¶q¡C¦ý¬O¡A¶q¤l¤O¾Çpºân¦p¦ó¹w´ú¥ú¾Ç©Ê½è©O¡Hº¥ý§ÚÌ¥²¶·¤F¸Ñ¨ì¡A¦UºØ§÷®Æ¦³¨ä¯S©w¥ú¾Ç©Ê½è¡A¬O¦]¬°§÷®Æ¬Ò¬O¥Ñ¹q¤l»Pì¤l®Ö³o¨Ç±a¹q²É¤l©Ò²Õ¦¨¡A¦]¦Ó·|¨ü¹qºÏªiªº¼vÅT¡A·|»P¹qºÏªi¥æ¤¬§@¥Î¡A¡C±q¶q¤l¤O¾Çªº¤½¦¡¨Ó¬Ý¡A¤Þ¤J¹qºÏ³õ¨âºØ¤è¦¡¡Aªº¨ä¤¤¤@ºØ¬O¹qºÏªi¬Ý§@¬O¥ú¤l¡A¦Û¤v¤]¬O¹q¤l¤§¥~ªº¥t¤@ºØ²É¤l¡A¦Ó²É¤l¤§¶¡¤S¦³¤£¦Pªº¥æ¤¬§@¥Î¡]³z¹L hamiltonian¡^¡F¥t¤@ºØ¤èªk¡A¬O§â¹qºÏªiªº®ÄÀ³¬Ý§@¬O¤@ºØ¥j¨åªº¥~¥[³õ¼vÅT¡C¦b CASTEP ¤¤¨Ï¥Îªº¬O«áªÌ¡A¬G¬Ý¤£¨ì¥ú¤lªºªi¨ç¼Æ¡A¦Ó¬O·|¬Ý¨ì Hamiltonian ¤¤ªº°Ê¶qºâ²Å³Q¦h¥[¤F¤@Ó¦V¶q¦ì¡]vector potential, A ¡^¡C ·|¨ã¦³¨º¼Ëªº§Î¦¡¡A¬O¦]¬°¦p¦¹¤@¨Ó¥¦´N·|º¡¨¬²É¤l¦b¹qºÏ³õ¤Uªº¹B°Ê¤èµ{¦¡¡]³ÒÛ´µ¤O¡^¡C
·LÂZ²z½×²¤¶»P«D®ÉÅܤ@¶¥·LÂZªºµ²ªG
n¨D¸Ñ¤Wz¨º¼Ë¦³·s¼W¶µ Hamiltonian ªº¡]¶q¤l¡^¤O¾Ç°ÝÃD¡A±`¨£ªº§@ªk¬O§â³oÓ¡]¹qºÏÔ·©Ò±a¶i¨Óªº¡^ÃB¥~ºâ²Å¶µ·í§@¬O·L¤pªºÂZ°Ê¡A¦Ó¥Î·LÂZ²z½×ªº¤èªk¨Ó³B²z¡C
·LÂZ²z½×ªº°ò¥»ºë¯«¡A¬O°²³]·sªºª«²z¶q»P쥻³Q¥¼·LÂZ¨t²Îªº¦P¤@ª«²z¶q¤@©w¦³¯Å¼Æ®i¶}ªºÃö«Y¡A¥Hªi¨ç¼Æ¡B¥»¼x¯à¶q¡Bºâ²Å´Á±æȬ°¨Ò¡G
Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + ...
E = E(0) + λE(1) + λ2E(2) + ...
O = O(0) + λO(1) + λ2O(2) + ...
¦Ó λ «h¬O¨Ó¦Û·sÂÂ Hamiltonian
H = H(0) + λΔH
ªºÃö«Y¡A¨ä¤¤ ΔH ´N¬O·LÂZ¡A¨ä¤j¤p¥Ñ λ ±±¨î¡C
½Ðª`·N¦b³oùØ Ψ(0)¡BE(0)¡BO(0)¡BH(0) ¥H¤Î ΔH §Ú̬Oª¾¹Dªº¡A¨ä¥L¤W¼Ð¬O (1)¡B(2) µ¥©Î§ó°ª¶¥¤§¦Uª«²z¶qªº®i¶}¶µ¡A§Ṳ́@¶}©l¨Ã¤£ª¾¹D¡A»Ýn±q¥Ñ·LÂZ²z½×±À¾É¾ã²z¥X¨Óªº¤½¦¡¥h¨D¸Ñ¡A¤~¯à¾å±o¡C
¦Ü©ó¯àÅý§Ų́D¥X¸Ñªº¤½¦¡«ç»ò¨Óªº©O¡H§Ú̦³¿³½ì·Qª¾¹D¤§³Q·LÂZ¨t²Îªº¸Ñ¡]¥»¼x¯à¶q E ¤Î¥»¼x¨ç¼Æ Ψ¡^¡Aº¡¨¬Á§¤B®æ¤èµ{¦¡
HΨ = EΨ
·LÂZ²z½×»{¬°«e± λ ®i¶}¯Å¼Æªº§Î¦¡¬O¤@©w¦¨¥ßªº¡A§â Ψ ¤Î E ªº·LÂZ®i¶}¦¡¥N¤J¤W±ªºÁ§¤B®æ¤èµ{¦¡¡C«h¸Ó¦¡µ¥¸¹ªº¨âÃä³£·|¥X²{¤@¤j°ï¦UºØ¦¸¤èªº λn ¶µ¡G
( H(0) + λΔH ) ( Ψ(0) + λΨ(1) + λ2Ψ(2) + ... )
= ( E(0) + λE(1) + λ2E(2) + ... ) ( Ψ(0) + λΨ(1) + λ2Ψ(2) + ... )¦Ó³oÓµ¥¸¹Ãö«Y«o¬O¤£ºÞ λ ȬO¦h¤Ö¡A³£¤@©wn¦¨¥ß¡C¤]´N¬O»¡¡AY§ÚÌ°Ý λ ªºÈ¸Ó¬O¦h¤Ö¡A«h§ÚÌ¥²¶·n¨D¸Ñ¨Ì¤W¦¡²¾¶µ¾ã²z¦¨¤§ λ ªº¾¦¸¤è¦¡¶µ
Aλ0 + Bλ1 + Cλ2 + ... = 0
¨ä¤¤
A = ( H(0)Ψ(0) - E(0)Ψ(0) )
B = ( H(0)Ψ(1) + ΔHΨ(0) -E(0)Ψ(1) - E(1)Ψ(0) )
C = ( H(0)Ψ(2) +ΔHΨ(1) - E(0)Ψ(2) - E(1)Ψ(1) - E(2)Ψ(0) )
¦ý¬O¡A«ç»ò¥i¯à λ µL½×¤°»òȳ£·|º¡¨¬¤W±ªº¤@¤¸¦h¦¸¤èµ{¦¡©O¡A°ß¤@ªº¥i¯à¡A´N¬O λn ¦U¶µªº«Y¼Æ A¡BB¡BC¡B...¡A³£«íµ¥©ó¹s¡C¤]´N¬O»¡¡G
H(0)Ψ(0) = E(0)Ψ(0)
H(0)Ψ(1) + ΔHΨ(0) = E(0)Ψ(1) + E(1)Ψ(0)
H(0)Ψ(2) +ΔHΨ(1) = E(0)Ψ(2) + E(1)Ψ(1) + E(2)Ψ(0)
¤W¦C¦U¦¡¤¤¤§¥¼ª¾¼Æ¤w¥ÎÃC¦â¼Ð¥X¡C
±`¨£¦³¨âºØ¤èªk(°²³]µL²¨Ö)¡G
¦C¥X lambda ¦¸¤è«Y¼Æ¥t¤@ºØªº¤èªk¡A
H(0)Ψ(0) = E(0)Ψ(0)
( H(0) - E(0) ) Ψ(1) = ( ΔH + E(1) ) Ψ(0)
( H(0) - E(0) ) Ψ(2) = ( E(1) - ΔH ) Ψ(1) + E(2) Ψ(0)
§Q¥Î ∫ Ψ*(0) Ψ(1) dx = 0 ªº¯S©Ê¡]¨£¤Uµù¡^¡A¤@¶¥¦¡¤¤¡A¨â°¼¦P®É¥ª¼ Ψ*(0) ¨Ã¿n¤À¡Aµ¥¸¹¥ª°¼Åܹs¡A«h E(1) ¥iª½±µ²¾¶µÀò±o¡C
µù¡GY A ¬O Hermitian¡A A | u' > = 0¡A¥iÃÒ©ú < u' | A | u > = 0¡CÃÒ©ú¡G < u' | A | u > = < u | A | u' >* = < u | 0 > = 0
¨D¸Ñ Ψ(1) ªº¤èªkªº¡A¬O§Q¥Î²Ä¤@¦¡ªº¥»¼x°ÝÃD¸Ñ
H(0) um = Em um
¨Ó®i¶} Ψ(n) ¤Î E(n)¡A¥H Ψ(1) ¬°¨Ò¡A
Ψ(1) = Σn a(1)n un
¥N¤J«e± λ1 «Y¼Æªº¦¡¤l¤¤¡A¨Ã¥B°²³]§ÚÌ¥¿¦b³B²z Ψ(0) = um ªº¨º²Õ Ψ(1)¡]·íµM¡A¨ä¥L©Ò¦³¤£¦P m Ȫº¸Ñ¤]¬O¬Û¦Pªº³B²z¤è¦¡¡^¡A´N¦³¡]¦b¦¹¥H ΔHkm ¥Nªí <uk | ΔH | um> ¡^
Σn a(1)n En un + ΔHum = Em Σn a(1)n un + E(1)um
¦Û¥ª°¼¼¤Wn*k ¨Ã¿n¤À¡A§Q¥Î <uk | um> = δkm¡A¥Ñ k ≠ m ªº¦¡¤l¥i±o
a(1)k = ΔHkm/(Em - Ek)
ª`·N¤W¦¡¤¤ k ≠ m ¡]§ÚÌ¥¿¦b³B²z Ψ(0)m ªº²Ä¤@¶¥·LÂZ Ψ(1)m¡^¡A¥t¥~¥Ñ m = n ªº¦¡¤l¤]¥i¶¶«K±o
E(1) = ΔHmm
²{¦b¥u³Ñ¤U¡]¥¿¦b³B²z¤§ m ªº¡^a(1)m ©|¥¼½T©w¡AÂÇ¥Ñn¨D Ψm = Ψ(0)m + λ Ψ(1)m = um + λΨ(1)m ¥²¶·¬OÂk¤@¤Æªº¡]¨ú¨ì λ1 ªººë½T«×¡^¡C«h¦³
1 = < um + λ Σn a(1)n un | um + λ Σn a(1)n un > = 1 + λa(1)m + λa(1)m* + λ2 Σn a(1)n a(1)n*
¦]¬°ºë½T«×¨ú¨ì λ1¡A¦]¦¹§ä¨ì a(1)m = 0 ¥i¥Hº¡¨¬¦¹¤@±¡ªp¡C ¨ì¦¹ªi¨ç¼Æ¤Î¯à¶q¤§¤@¶¥·LÂZ®i¶}ªº©Ò¦³¥¼ª¾«Y¼Æ¬Ò½T¤w©w¡C
¦Ü©ó¤G¶¥·LÂZ¡A±Ä¥Îªº¤]¬O¬Û¦üªºµ¦²¤¡A¥i¨£©ó¶q¤lª«²z©Î¶q¤l¤Æ¾Ç±Ð¬ì®Ñ¡C
²¨Ö·LÂZ
¥H Ψn(0) , Ψm(0) ²¨Ö¬°¨Ò¡A
Ψn = CnnΨn(0) + CnmΨm(0) + λΨn(1) + λ2 Ψn(2) + ...
Ψm = CmnΨn(0) + CmmΨm(0) + λΨm(1) + λ2 Ψm(2) + ...
¥ý¹ï¨¤¤Æ H0 + λΔH ¨D·sªº Ψn ¡B Ψm
¨ä¾l¨£½Ò¥» ......
»P®É¶¡¦³Ãöªº·LÂZ
¶ÂªO±À¾É¡G ¶O¦Ì¶Àª÷«ß
±q¤¶¹q¨ç¼Æµê³¡¥Xµo
¤¶¹q¨ç¼Æ ε ªº©w¸q¬O D = ε E¡A¨ä¤¤ D ¬O¹q¦ì²¾¡AE ¬O¹q³õ¡CY§â¶g´ÁÅܤƪº¹q³õ¥Î½Æ¼Æ¬Û¶q¨Óªí¥Ü¡A«h¹ê³¡ªº¤¶¹q¨ç¼Æ»P½Æ¼Æ¬Ûªº¹q³õ¼¦b¤@°_¥NªíªiªºÄ~Äò®¶°Ê¶Ç¼½¡A¦Óµê³¡ªº¤¶¹q¨ç¼Æ»P½Æ¼Æªº¬Û¼¦b¤@°_«h¥Nªí¦³®¶´Tªº°I´î¡A´N¤]´N·N¨ýµÛ¤¶½è§l¦¬¯à¶q¡C
¹q¤l¦b³æ¦ì®É¶¡¤º¦]§l¦¬¹qºÏªi¦ÓÅD¾Eªº¾÷²v¡A¥i¥H¥Ñ®ÉÅÜ©Ê·LÂZ©Ò±À¾É¥X¨Óªº "¶O¦Ì¶Àª÷«ß" ¤½¦¡¨Ó´yz¡A³o¥NªíµÛ¤¶½è¨t²Î§l¦¬¹qºÏªiªº±¡§Î¡A¥¦¬O¥Ñ¹q°¸·¥ºâ²Å¡B¦û¾Ú¶q¤lºA¡B¥¼¦û¾Ú¶q¤lºA¡B¥H¤Î³o¨ÇºAªº¥»¼x¯à¶q®t©Òºc¦¨¡C±q¹qºÏªi¦b¤¶½è¤¤¶Ç¼½ªºÆ[ÂI¡A³o¥¿¬O¤¶¹q±`¼Æµê³¡ªº¦æ¬°¡C¦]¦¹¡A¤¶¹q±`¼Æ¡]¨ç¼Æ¡^ªºµê³¡³z¹L¶O¦Ì¶Àª÷«ß¦Ó¯à¥Hªi¨ç¼Æ¡B¥»¼x¯à¶qµ¥¶q¤l¤O¾Çªº¤½¦¡ªí¥Ü¥X¨Ó¡G
Kramers-Kronig Âà´«¨ú±o¹ê³¡
°ò©óª«²z¤¤ªº¦]ªGÃö«Y¡A¤¶¹q¨ç¼Æªº¹ê³¡»Pµê³¡¨âªÌ¤§¶¡¤£¬O¦U¦Û¿W¥ß¦Ó¬O¦³Ãö¡C³z¹L Kramers-Kronig Âà´«¥i±o¨ä¹ê³¡¡C
n¤p¤ßªº¬O K-K Âà´«²z½×¤W¬O¿n¤À©Ò¦³ÀW²v½d³ò¡A´N¤]´N·N¨ýµÛ¦bpºâ¤¶¹q¨ç¼Æµê³¡®É¡A¥²¶·¤Þ¤J«D±`¦hªºªÅy°ì¤~¥i¯à¹ïÀ³¨ì¤ñ¸û°ªÀW²vªº¥ú¤l§l¦¬¡C¡]¦Ü©ó¨ì©³n¨ú¦h¤Ö¤~°÷¡A¶·°µ "¦¬ÀÄ©Ê´ú¸Õ¡C¡^
¨ä¥L¡]½u©Ê¡^¥ú¾Çª«²z¶q
¦³¤F¹ê³¡»Pµê³¡ªº¤¶¹q¨ç¼Æ¡A´N¯à³z¹L¤@¨Ç²³æªºÃö«Y¨ä¥Lªº½u©Ê¥ú¾Ç¶q¡A¨Ò¦p
§l¦¬«Y¼Æ¡]§l¦¬¥úÃС^
Abs = ε2 ω / (n c) ¡A¨ä¤¤ w ¬O¤J®g¥ú¤lÀW²v¡Bn ¬O§é®g²v¡C
§é®g²v
¹qºÏªi¦b¤¶½è¤¤¶Ç¼½ªº¤è¦¡¥i¸g¥Ñ§é®g²v¨Ó´yz¡A¥¦°ò¥»¤W¬O´yz¤¶½è¤¤¥ú½u¶Ç¼½¬Û¸û©ó¯uªÅ¤¤¶Ç¼½¦b³t²v¤Wªº®t²§¡A¦¹¤@®t²§³y¦¨¤F·í¥ú½u¥H«D««ª½¨¤«×³q¹L¤£¦P§é®g²vª«½è©Òºc¦¨ªº¤¶±®É¡A¥úªº¦æ¶i·|Ås§é¤@Ó¨¤«×¡A§é®g²vªº¦WºÙ¥Ñ¦¹¦Ó¨Ó¡C³z©úªºª«½è¨ä§é®g²v¬O¯Â¹ê¼Æ¡A·|§l¦¬¥ú½uªºª«½è«h¨ä§é®g²vµê³¡¤£¬°¹s¡C
N = n + ik ¡A¨Ã¥B N »P¤¶¹q¨ç¼ÆªºÃö«Y¬O N2 = ε = ε1 + i ε2