What is energy (mechanical energy)
(Because it cannot be explained, there must be laws. There is no answer, only laws.)
Dynamic, force, potential, energy
equivalent substitution
Money Thoughts
It's easier to see and get the model
Motion
see, touch
Cambrian explosion
(Why does having one more sense make the ecosystem more diverse? Think about the effects on species of the increased dimensions of the ocean, land, and sky in the biosphere.)
Galileo
inertia
big ball small ball
Kepler
Summarized from teacher Tycho¡¦s many years of information
Three major planetary laws (1. Ellipse; 2. Equal area velocity; 3. Period)
Newton
Inverse Square Ratio Orbital, Harley's Cambridge Row, Spawner
Newtonian-Galilean time and space (the flow of time is fixed everywhere, so we can talk about this instant)
What is the speed?
(1) You will have gone far the next time you look at it (Why can¡¦t you just use this? Zino¡¦s Paradox)
(2) v = dx/dt
Based on f = m a
box:?f = m a , a = f / m, where a is a vector (Q: What is a vector?)
What is a?, a = dv / dt (What does the d / dt differential symbol mean?)
sub-box: limit, continuous, differential
What is v?, dx / dt
Supplement: From sums to integrals (bring out Newton to teach us), what better reason is there to review calculus?
¡ì f dx ~ £U?i?f?i?£Gx?i
¡ì f dx ¡Ý lim?£Gx¡÷0?£U?N?i=1?f?i?£Gx?i?= lim?£Gx¡÷0?£U?N?i=1?f?i?£Gx
?
mathematical principles of natural philosophy
?
?
Introduction to vector inner product
A?¡E?B?= |?A?| |?B?| cos £c = AB cos £c
(A?x?, A?y?, A?z?) ¡E(B?x?, B?y?, B?z?) = A?x?B?x?+ A?y?B?y?+ A?z?B?z
?
The meaning of vector inner product: (effective direction) effective size related to direction
For example:
1. Effective area of ??capture = fishing net size * projection * interception direction
2. Flow rate = flow rate [inner product] area = flow rate * cross-sectional area
(Why does a small unit area have a direction? Because in the 3-dimensional world, its normal direction is only a specific direction, and the information must be given to be complete.) ()3. The amount of work done = the moving distance * the force received by the object in the direction of movement = the amount of force * the movement of the object in the direction of force applied (bathroom wet and soapy environment)
?
?
The "value" of force
size?
Effect?
Useful or useless?
quantity?
?
?
Definition of work
Work W =?f?¡E?s
(Think: If you just push and don¡¦t move, is there any work done?)
?
work-kinetic energy theorem
What does a force do to something with mass (mass is a different degree of inertia)?
If the length and direction of action are not discussed together, the rules will be inconsistent.
?
W = ¡ì?f?¡P d?x?= m ¡ì?a?¡P d?x?= m ¡ì (d?v?/dt) ¡P d?x?= m ¡ì (d?v?) ¡P (d?x?/dt) = m ¡ì d?v?¡P?v?= m ¡ì?v?¡P d?v?= m (1/2) v?2
?
?
?
?
conservative force work
Definition of conservative force:
Forces whose work is independent of the process path are called conservative forces
"Path independent" ¡÷ "Only related to the starting and ending points"
"The process has nothing to do with it" ¡÷ "Ask only about the results"
?
Example of a force that is not conservative: Friction
?
?
How to express the sentence "independent of the path" in mathematics?
W = -¡ì?f?¡P?d?r?= U(?r?f?) - U(?r?j?)?¡Ý ¡ìdU
(Why negative? Think of the gravity example)
What is dU here? What are its properties?
Calculus: U(x,y,z) is a function of three independent variables
The dU symbol, called the total differential, has the following relationship:
dU = (?U/?x) dx + (?U/?y) dy + (?U/?z) dz
This is a very significant relationship, think about it
£GU = ? £Gx? £Gy? £Gz?
You can feel it
?
W = ¡ì dW?= W - W?0
But originally according to the definition W = ¡ì?f?¡P?d?r
Only the above formula ¡ì?f?cons?¡P?d?r?= ¡ì???U?¡P?d?r?= ¡ìdU can meet the requirements
?
Important conclusion, conservative force must be
?
?
Storage of energy: potential energy (energy related only to position)
?
Gravity: f = mg
Gravitational potential energy: U = mgh
?
Elasticity: f = - kx
Elastic potential energy: U = (1/2) kx?2
?
Supplement: In science and engineering,?f?= -???U is defined to correspond to the force generated by a certain positional energy U.
?
?
Another important conservative force (electrostatic force)
(Why emphasize "static" electric force?)
?
From force to beauty: discovering "energy" in force and force action
Force is a vector and energy is a scalar quantity.
Force changes, energy remains constant.
?
?
"Conservation of Energy"
Precisely because energy is transformed through work, it is neither created nor destroyed out of thin air.
Kinetic energy plus potential energy is called mechanical energy (also called mechanical energy) E = K + U
Conservation of mechanical energy: Without the influence of external forces, mechanical energy is conserved
E = K + U
dK = f dr = - dU (don¡¦t leave the good news to outsiders)
Or you can write dU = -fdr = -dK
Therefore dE / dt = d(K+U) / dt = 0 (because dK = -dU => dK + dU = 0 in the above equation)
dE / dt = 0 => E = C (C is a constant, independent of time)
?
¦ó¿×¯à¶q¡]¤O¾Ç¯à¡^
¡]¦]¬°µLªk»¡©ú¡A©Ò¥Hn¦³©w«ß¡C¨S¦³µª®×¡A¥u¦n©w«ß¡C¡^
°Ê¡B¤O¡B¦ì¶Õ¡B¯à¶q
µ¥»ùªº´À¥N
³f¹ôªº«ä¦Ò
¬Ý±o¨£¡A¼Ò±o¨ìªº¤ñ¸û®e©ö
¹B°Ê
¬Ý¨£¡BºNµÛ
´HªZ¬ö¤jÃzµo
¡]¬°¤°»ò¦h¤@ºØ·P©x¡A·|Åý¥ÍºA¨t¦h¼Ë¤Æ¼W¥[¡H·Q·Q¥Íª«°é®ü¬v¡B³°¦a¡B¤ÑªÅªººû«×¼W¥[¡A¹ïª«ºØ±a¨Óªº®ÄÀ³¡C¡^
¦÷§Q²¤
ºD©Ê
¤j²y¤p²y
§J¤R°Ç
±q¦Ñ®v²Ä¨¦¦h¦~ªº¸ê®ÆÂk¯Ç
¤T¤j¦æ¬P©w«ß¡]¤@¡B¾ò¶ê¡F¤G¡Bµ¥±¿n³t²v¡F¤T¡B¶g´Á¡^
¤û¹y
¥¤è¤Ï¤ñ²vªºy¹D¡A«¢¹pªº¼C¾ô¦æ¡A¶Ê¥ÍªÌ
¤û¹y¡Ð¦÷§Q²¤®ÉªÅ¶¡¡]³B³B©T©wªº®É¶¡¬y¡A©Ò¥H¥i¥H½Í³oÓÀþ¶¡ªº¡^
³t«×¬O¤°»ò¡H
(1) ¤U¦¸¬Ý®É¤w¨«»· ¡]¬°¤°»ò¤£¯à¥Î³oÓ´N¦n¡H©u¿Õ®¯½×¡^
(2) v = dx/dt
°ò©ó f = m a
box : f = m a, a = f / m, ¨ä¤¤ a ¬O¦V¶q¡]°Ý¡G¦V¶q¬O¤°»ò¡H¡^
a ¬O¤°»ò¡H a = dv / dt ¡]d / dt ·L¤À²Å¸¹¬O¤°»ò·N«ä¡H¡^
sub-box : ·¥¡B³sÄò¡B·L¤À
v ¬O¤°»ò¡Hdx / dt
¸É¥R¡G±q ¥[Á` ¨ì ¿n¤À¡]½Ð¥X¤û¹y¨Ó±Ð§ÚÌ¡^n½Æ²ß·L¿n¤À¡A¦³¤°»ò¤ñ³oÓ§ó¦nªº²z¥Ñ¡H
∫ f dx ~ Σi fi Δxi
∫ f dx ≡ limΔx→0 ΣNi=1 fi Δxi = limΔx→0 ΣNi=1 fi Δx
¦ÛµMõ¾Çªº¼Æ¾Çì²z
¦V¶q¤º¿n¤¶²Ð
A•B = | A | | B | cos θ = A B cos θ
(Ax, Ay, Az) •(Bx, By, Bz) = AxBx + AyBy + AzBz
¦V¶q¤º¿nªº·N¸q¡G¡]¦³®Ä¤è¦V¡^»P¤è¦V¦³Ãöªº¦³®Ä¤j¤p
¨Ò¦p¡G
1. ¸ÉÀò¦³®Ä±¿n = º®ºô¤j¤p *§ë¼v* ºI¬y¤è¦V
2. ¬y³q¶q = ¬y³t¡e¤º¿n¡f±¿n = ¬y³t * ºI±¿n
¡]¤p³æ¤¸±¿n¬°¤°»ò¦³¤è¦V¡H¦]¬°¦b 3ºû ªº¥@¬ÉùØ¡A¨äªk¤è¦V¥u¬O¬Y¯S©w¤è¦V¡A¥²¶·µ¹©w°T®§¤~§¹¾ã¡C¡^¡]¡^3. §@¥\¤j¤p = ²¾°Ê¶ZÂ÷ * ª«Åé¦b²¾°Ê¤è¦V¤Wªº¦¬¤O = ¬I¤O¤j¤p * ª«Åé¦b¬I¤O¤è¦V¤Wªº²¾°Ê¡]¯D«Ç·Ã·ÆªÎ¨m¹Ò¡^
¤Oªº¡u»ùÈ¡v
¤j¡B¤p¡H
®Ä¡BªG¡H
¦³¥\¡BµL¯q¡H
¼Æ¡B¶q¡H
¥\ªº©w¸q
¥\ W = f•s
(Think : ¥u±À¡A¤£°Ê¡A¨ì©³¦³¨S¦³§@¥\¡H)
¥\¡Ð°Ê¯à©w²z
¤O¹ï±a¦³½è¶qªºªF¦è¡]½è¶q¬O¤£¦PºD©Êªºµ{«×¡^¡A·|°µ¤°»ò¡H
¤£¤@¨Ö±´°Q§@¥Îªø«×¤Î¤è¦Vªº¸Ü¡A´N·|º©µLªk«h¡C
W = ∫ f · dx = m ∫ a · dx = m ∫ (dv/dt) · dx = m ∫ (dv) · (dx/dt) = m ∫ dv · v = m ∫ v · dv = m (1/2) v2
«O¦u¤O§@¥\
«O¦u¤Oªº©w¸q¡G
§@¥\»P¹Lµ{¸ô®|µLÃöªº¤O¡AºÙ¬°«O¦u¤O
¡u¸ô®|µLÃö¡v¡÷¡u¥u»P°_©l»P²×µ²ÂI¦³Ãö¡v
¡u¹Lµ{µLÃö¡v¡÷¡u¥u°Ýµ²ªG¡v
¤£¬O«O¦u¤Oªº¨Ò¤l¡G¼¯À¿¤O
¡u»P¸ô®|µLÃö¡v³o¥y¸Ü¡A«ç»ò¥Î¼Æ¾Çªí¹F¡H
W = -∫ f · dr = U(rf) - U(rj) ≡ ∫dU
¡]¬°¤°»ò¬Otªº¡H·Q·Q«¤Oªº¨Ò¤l¡^
³oùتº dU ¬O¤°»ò¡H¥¦¦³¤°»ò©Ê½è¡H
·L¿n¤À¡G U(x,y,z) ¬O¤TÓ¦ÛÅܼƪº¨ç¼Æ
¥s§@¥þ·L¤Àªº dU ²Å¸¹¡A¦³¥H¤UÃö«Y¡G
dU = (∂U/∂x) dx + (∂U/∂y) dy + (∂U/∂z) dz
³o¬O·N¸q«¤jÃö«Y¦¡¡A·Q·Q
ΔU = ¡H Δx ¡HΔy ¡HΔz¡H
´N¥i¥HÅé·|
W = ∫ dW = W - W0
¦ý¥»¨Ó¨Ì©w¸q W = ∫ f · dr
°ß¦³¤W¦¡ ∫ fcons · dr = ∫∇U · dr = ∫dU ¡A¤~¯à²Å¦Xn¨D
«nµ²½×¡A«O¦u¤O¥²©w
¯à¶qªºÀx¦s¡G¦ì¯à¡]¥u¸ò¦ì¸m¦³Ãöªº¯à¶q¡^
«¤O : f = m g
«¤O¦ì¯à¡GU = m g h
¼u¤O¡Gf = - k x
¼u¤O¦ì¯à¡GU = (1/2) k x2
¸É¥R¡G¦b¬ì¾Ç¤Î¤uµ{¤W¡A©w¸q f = -∇U ¨Ó¹ïÀ³¬Y«ù©w ¦ì¯à U ©Ò²£¥Íªº¤O¡C
¥t¤@Ó«nªº«O¦u¤O ¡]ÀR¹q¤O¡^
¡]¬°¤°»ò±j½Õ "ÀR"¹q§@¥Î¤O¡H¡^
±q¤O¨ì¬ü¡G¦b§@¥Î¤O¡B¤O§@¥Î¤¤µo²{¡u¯à¶q¡v
¤O¬O¦V¶q¡B¯à¶q¬O¯Â¶q¡C
¤O¬OÅܤƪº¡A¯à¶q«O«ù©wÈ¡C
¡u¯à¶q¦u«í¡v
¥¿¦]¬°¯à¶q¬O³z¹L§@¥\¨ÓÅÜ´«¡A¦]¦¹¤£¹y¥~²£¥Í¡A¥ç¤£¾ÌªÅ®ø·À¡C
°Ê¯à¥[¦ì¯à¡A¥s§@¤O¾Ç¯à¡]¤SºÙ¾÷±ñ¯à¡^E = K + U
¤O¾Ç¯à¦u«í¡GµL¥~¤Oªº¼vÅT¤U¡A¤O¾Ç¯à¦u«í
E = K + U
dK = f dr = - dU ¡]ªÎ¤ô¤£¸¨¥~¤H¥Ð¡^
©Î¬O¼gÂæ¤]¥i¥H dU = -fdr = -dK
¦]¦¹ dE / dt = d(K+U) / dt = 0 ¡]¦]¬°¤W¦¡±ªº dK = -dU => dK + dU = 0¡^
dE / dt = 0 => E = C ¡]C ¬O¬Y±`¼Æ¡A»P®É¶¡µLÃö¡^